Publications by authors named "AA Serga"

When excited, the magnetization in a magnet precesses around the field in an anticlockwise manner on a timescale governed by viscous magnetization damping, after which any information carried by the initial actuation seems to be lost. This damping appears to be a fundamental bottleneck for the use of magnets in information processing. However, here we demonstrate the recall of the magnetization-precession phase after times that exceed the damping timescale by two orders of magnitude using dedicated two-colour microwave pump-probe experiments for a YFeO microstructured film.

View Article and Find Full Text PDF

Nonlinear interactions are crucial in science and engineering. Here, we investigate wave interactions in a highly nonlinear magnetic system driven by parametric pumping leading to Bose-Einstein condensation of spin-wave quanta-magnons. Using Brillouin light scattering spectroscopy in yttrium-iron garnet films, we found and identified a set of nonlinear processes resulting in off-resonant spin-wave excitations-virtual magnons.

View Article and Find Full Text PDF

Spin-wave amplification techniques are key to the realization of magnon-based computing concepts. We introduce a novel mechanism to amplify spin waves in magnonic nanostructures. Using the technique of rapid cooling, we create a nonequilibrium state in excess of high-energy magnons and demonstrate the stimulated amplification of an externally seeded, propagating spin wave.

View Article and Find Full Text PDF

Since temperature and its spatial, and temporal variations affect a wide range of physical properties of material systems, they can be used to create reconfigurable spatial structures of various types in physical and biological objects. This paper presents an experimental optical setup for creating tunable two-dimensional temperature patterns on a micrometer scale. As an example of its practical application, we have produced temperature-induced magnetization landscapes in ferrimagnetic yttrium iron garnet films and investigated them using micro-focused Brillouin light scattering spectroscopy.

View Article and Find Full Text PDF

Previously, it has been shown that rapid cooling of yttrium-iron-garnet-platinum nanostructures, preheated by an electric current sent through the Pt layer, leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein condensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnons depending on the electric current and applied field orientations. Here we demonstrate that the injection or annihilation of magnons via the SHE can prevent or promote the formation of a rapid cooling-induced magnon BEC.

View Article and Find Full Text PDF

The fundamental phenomenon of Bose-Einstein condensation has been observed in different systems of real particles and quasiparticles. The condensation of real particles is achieved through a major reduction in temperature, while for quasiparticles, a mechanism of external injection of bosons by irradiation is required. Here, we present a new and universal approach to enable Bose-Einstein condensation of quasiparticles and to corroborate it experimentally by using magnons as the Bose-particle model system.

View Article and Find Full Text PDF

Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y[Formula: see text]Fe[Formula: see text]O[Formula: see text] (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications.

View Article and Find Full Text PDF

A macroscopic collective motion of a Bose-Einstein condensate (BEC) is commonly associated with phenomena such as superconductivity and superfluidity, often generalised by the term supercurrent. Another type of motion of a quantum condensate is second sound-a wave of condensate's parameters. Recently, we reported on the decay of a BEC of magnons caused by a supercurrent outflow of the BEC from the locally heated area of a room temperature magnetic film.

View Article and Find Full Text PDF

Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room temperature by means of the Brillouin light scattering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: a multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone.

View Article and Find Full Text PDF

An ensemble of magnons, quanta of spin waves, can be prepared as a Bose gas of weakly interacting quasiparticles. Furthermore, the thermalization of the overpopulated magnon gas through magnon-magnon scattering processes, which conserve the number of particles, can lead to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum. However, magnon-phonon scattering can significantly modify this scenario and new quasiparticles are formed-magnetoelastic bosons.

View Article and Find Full Text PDF

Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure.

View Article and Find Full Text PDF

The spin wave dynamics in patterned magnetic nanostructures is under intensive study during the last two decades. On the one hand, this interest is generated by new physics that can be explored in such structures. On the other hand, with the development of nanolithography, patterned nanoelements and their arrays can be used in many practical applications (magnetic recording systems both as media and read-write heads, magnetic random access memory, and spin-torque oscillators just to name a few).

View Article and Find Full Text PDF

The nonlinear decay of propagating spin waves in the low-Gilbert-damping Heusler film Co_{2}Mn_{0.6}Fe_{0.4}Si is reported.

View Article and Find Full Text PDF

We present spatially resolved measurements of the magnon temperature in a magnetic insulator subject to a thermal gradient. Our data reveal an unexpectedly close correspondence between the spatial dependencies of the exchange magnon and phonon temperatures. These results indicate that if--as is currently thought--the transverse spin Seebeck effect is caused by a temperature difference between the magnon and phonon baths, it must be the case that the magnon temperature is spectrally nonuniform and that the effect is driven by the sparsely populated dipolar region of the magnon spectrum.

View Article and Find Full Text PDF

An attractive direction in next-generation information processing is the development of systems employing particles or quasiparticles other than electrons--ideally with low dissipation--as information carriers. One such candidate is the magnon: the quasiparticle associated with the eigen-excitations of magnetic materials known as spin waves. The realization of single-chip all-magnon information systems demands the development of circuits in which magnon currents can be manipulated by magnons themselves.

View Article and Find Full Text PDF

Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again.

View Article and Find Full Text PDF

Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.

View Article and Find Full Text PDF

Magnetic Heusler materials with very low Gilbert damping are expected to show novel magnonic transport phenomena. We report nonlinear generation of higher harmonics leading to the emission of caustic spin-wave beams in a low-damping microstructured Co(2)Mn(0.6)Fe(0.

View Article and Find Full Text PDF

The phenomenon of coherent wave trapping and restoration is demonstrated experimentally in a magnonic crystal. Unlike the conventional scheme used in photonics, the trapping occurs not due to the deceleration of the incident wave when it enters the periodic structure but due to excitation of the quasinormal modes of the artificial crystal. This excitation occurs at the group velocity minima of the decelerated wave in narrow frequency regions near the edges of the band gaps of the crystal.

View Article and Find Full Text PDF

We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium while a wave is inside, this wave is coupled to a secondary counterpropagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves.

View Article and Find Full Text PDF

We determine the dynamic magnetization induced in nonmagnetic metal wedges composed of silver, copper, and platinum by means of Brillouin light scattering microscopy. The magnetization is transferred from a ferromagnetic Ni80Fe20 layer to the metal wedge via the spin pumping effect. The spin pumping efficiency can be controlled by adding an insulating interlayer between the magnetic and nonmagnetic layer.

View Article and Find Full Text PDF

We experimentally show that exchange magnons can be detected by using a combination of spin pumping and the inverse spin-Hall effect proving its wavelength integrating capability down to the submicrometer scale. The magnons were injected in a ferrite yttrium iron garnet film by parametric pumping and the inverse spin-Hall effect voltage was detected in an attached Pt layer. The role of the density, wavelength, and spatial localization of the magnons for the spin pumping efficiency is revealed.

View Article and Find Full Text PDF

We show both theoretically and experimentally that a collapsing (2+1)-dimensional wave packet in a medium with cubic nonlinearity and a two-dimensional dispersion of an order higher than parabolic irradiates untrapped dispersive waves. The studies are performed for a spin-wave bullet propagating in an in-plane magnetized ferrimagnetic film. An induced uniaxial anisotropy in such a medium leads to the formation of narrow spin-wave caustic beams whose angles to the bullet's propagation direction are modified by the motion of the source.

View Article and Find Full Text PDF

The time reversal of pulsed signals or propagating wave packets has long been recognized to have profound scientific and technological significance. Until now, all experimentally verified time-reversal mechanisms have been reliant upon nonlinear phenomena such as four-wave mixing. In this paper, we report the experimental realization of all-linear time reversal.

View Article and Find Full Text PDF

We predict and experimentally demonstrate that in a medium with externally induced anisotropy, a wave source of a sufficiently small size can excite practically nondiffractive wave beams with stable subwavelength transverse aperture. The direction of beam propagation is controlled by rotating the induced anisotropy axis. Nondiffractive wave beam propagation, reflection, and scattering, as well as beam steering have been directly observed by optically probing dipolar spin waves in yttrium iron garnet films, where the uniaxial anisotropy was created by an in-plane bias magnetic field.

View Article and Find Full Text PDF