Publications by authors named "AA Atchley"

Spatial properties of noise statistics near unheated, laboratory-scale supersonic jets yield insights into source characteristics and near-field shock formation. Primary findings are (1) waveforms with positive pressure skewness radiate from the source with a directivity upstream of maximum overall level and (2) skewness of the time derivative of the pressure waveforms increases significantly with range, indicating formation of shocks during propagation. These results corroborate findings of a previous study involving full-scale engine data.

View Article and Find Full Text PDF

Bicoherence analysis has been used to characterize nonlinear effects in the propagation of noise from a model-scale, Mach-2.0, unheated jet. Nonlinear propagation effects are predominantly limited to regions near the peak directivity angle for this jet source and propagation range.

View Article and Find Full Text PDF

To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies.

View Article and Find Full Text PDF

Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes.

View Article and Find Full Text PDF

The fundamental azimuthal modes of a constricted annular resonator are investigated. It is found that a given mode of an unconstricted resonator splits into two separate modes in the constricted resonator. One mode is of a higher frequency and has a pressure antinode centered in the constricted region.

View Article and Find Full Text PDF

A single bubble of air in water can emit pulses of blue-white light that have durations of less than 50 ps while it is oscillating in an acoustic standing wave. The emission is called sonoluminescence. A knowledge of the bubble diameter throughout the cycle, and in particular near the time of sonoluminescence emission, can provide important information about the phenomenon.

View Article and Find Full Text PDF

The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz.

View Article and Find Full Text PDF

A description is given of a precise technique for measuring the threshold for acoustic cavitation inception. The system, which is automated so as to remove operator involvement, utilizes a slow ramping of the acoustic pressure amplitude until cavitation occurs. The detection criterion is the generation of a sufficiently intense sonoluminescent signal.

View Article and Find Full Text PDF