Publications by authors named "A-W Wu"

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

More than 70% of human information comes from vision. The eye is one of the most attractive sensing sites to collect biological parameters. However, it is urgent to develop a cost-effective and easy-to-use approach to monitor eyeball information in a minimally invasive way instead of current smart contact lenses or camera-based eyeglasses.

View Article and Find Full Text PDF

In this study an (AlGa)O barrier layer is inserted between β-GaO and GaN in a p-GaN/n-GaO diode photodetector, causing the dark current to decrease considerably, and device performance to improve significantly. The β-GaO/β-(AlGa)O/GaN n-type/Barrier/p-type photodetector achieves a photocurrent gain of 1246, responsivity of 237 A W, and specific detectivity of 5.23 × 10 cm Hz W under a bias of -20 V.

View Article and Find Full Text PDF

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

Two-dimensional (2D) PdSe atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe films with single-crystal domain areas exceeding 30 μm.

View Article and Find Full Text PDF

This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.

View Article and Find Full Text PDF

Glecirasib (JAB-21822) is a new covalent oral KRAS-G12C inhibitor. This multicenter, single-arm phase 2b study assessed the efficacy and safety of glecirasib administered orally at 800 mg daily in patients with locally advanced or metastatic KRAS-mutated nonsmall-cell lung cancer. The primary endpoint was the objective response rate (ORR) assessed by an independent review committee (IRC).

View Article and Find Full Text PDF

Tin-based halide perovskites represent a highly promising and eco-friendly alternative to lead-based materials with significant potential for optoelectronic applications. However, their advancement is hampered by challenges such as poor film crystallinity and unintended self-doping. Herein, this work reports the fabrication of high-quality CsSnBr perovskite films by plasma-assisted chemical vapor deposition (PACVD), which improves the film quality.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

Low-dimensional hybrid organic-inorganic perovskites (HOIPs) containing chiral organic ligands have recently emerged as promising candidates for circularly polarized light (CPL) detection, which can distinguish left- and right-handed CPL directly. However, the increase in responsivity and realization of self-powered CPL photodetector remain a challenge. Meanwhile, there is a trade-off between the photocurrent responsivity and the ability to differentially absorb CPL in detectors based on these low-dimensional perovskites.

View Article and Find Full Text PDF

Thua nao, a traditional Thai fermented soybean, offers a unique aroma and nutritional value. However, fresh thua nao cannot be stored for long periods due to its high in water activity (a). This study examined the effects of various drying methods, including natural sun drying and machine drying methods, namely hot air, microwave vacuum (MIC), and vacuum drying on the qualities of dried black soybean thua nao.

View Article and Find Full Text PDF

The wide-bandgap semiconductor material GaO exhibits great potential in solar-blind deep-ultraviolet (DUV) photodetection applications, including none-line-of-sight secure optical communication, fire warning, high-voltage electricity monitoring, and maritime fog dispersion navigation. However, GaO photodetectors have traditionally faced challenges in achieving both high responsivity and fast response time, limiting their practical application. Herein, the GaO solar-blind DUV photodetectors with a suspended structure have been constructed for the first time.

View Article and Find Full Text PDF
Article Synopsis
  • Phyllite is a metamorphic soft rock commonly encountered in tunnel excavation, posing construction challenges and safety risks.
  • This study analyzed the mechanical properties of phyllite through triaxial compression tests, focusing on factors like confining pressure, water content, and bedding angle to understand how these elements influence its behavior.
  • Results show that as confining pressure increases, both peak strength and elastic modulus of phyllite improve significantly, with dry conditions generally resulting in stronger performance than saturated conditions, leading to complex failure modes including slip shear and tension failure.
View Article and Find Full Text PDF

The performance of PbSe colloidal quantum dot (CQD) based photodiodes with responses beyond 2000 nm was far from satisfactory and has rarely been reported. The difficulty in obtaining chemically stable large-sized PbSe CQDs was the main reason. In this work, chloride ions in weak acidic solvent were introduced to in-situ etch out the Se atoms on the surfaces of PbSe CQDs and formed a -Pb-Cl protection layer.

View Article and Find Full Text PDF

Interlayer excitons (IX), spatially separated electron-hole pair quasiparticles, can form in type-II van der Waals heterostructures (vdWH). To date, the most widely studied IX in hetero- and homobilayer transition metal dichalcogenides feature momentum-indirect and visible interlayer recombinations. However, momentum-direct IX emissions and interlayer absorptions, especially in the infrared, are crucial for excitonic devices but remain underexplored.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the need for advanced light receivers to improve visible light communication but highlights challenges with current device structures and complexities.
  • - A new graphene-readout silicon-based microtube photodetector is proposed, offering quick response times (75 ns) and high sensitivity (responsivity of 6803 A/W), making it suitable for high-speed communication.
  • - This photodetector enables omnidirectional light-trapping and high data rates (up to 778 Mbps), with a wide field of view (140°) and capabilities for encrypted communication, which could enhance future developments in IoT and data security.
View Article and Find Full Text PDF
Article Synopsis
  • * A multi-ethnic meta-analysis revealed 22 risk loci linked to NTG, with 17 of these not previously identified, including significant new associations with BMP4 and TBKBP1.
  • * Findings suggest there’s a genetic overlap in risk factors between NTG and HTG, but NTG shows a generally lower risk effect, pointing to the potential for immunomodulatory treatments as neuroprotective options for glaucoma.
View Article and Find Full Text PDF

Antimony sulfide (SbS) photodetectors (PDs) possess extensive application prospects. Efficient carrier transport of a PD significantly affects the detectivity and response speed. Herein, we propose an all-inorganic self-powered SbS PD based on vertical TiO nanorods (NRs).

View Article and Find Full Text PDF

We consider avalanche photodiodes (APDs) functioning under near Geiger-mode operation for extremely weak light (single or several photons) detection, such as in LiDAR receivers. To meet such demands, APDs which simultaneously have a large active window size, moderate bandwidth (∼GHz), and high internal gain (responsivity), are highly desired. However, it is difficult to design APDs capable of meeting the afore-mentioned performance requirements due to the intrinsic limitations of the gain-bandwidth product (GBP).

View Article and Find Full Text PDF

A bias-selectable near-infrared (NIR) and extended short wavelength infrared (eSWIR) dual-band bandgap engineered GaAsSb/AlGaAsSb/T2SL (InGa As/GaAsSb) infrared photodetector, vertically stacked in a monolithic grown on InP substrate, is demonstrated. GaAsSb NIR sub-detector and T2SL eSWIR sub-detector are operated under small forward and reverse bias, respectively. The GaAsSb sub-detector functions within the NIR spectrum, with a 100% cutoff wavelength of 1.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are persistent, bioaccumulative contaminants found in water resources at levels hazardous to human health. However, the PFAS bioaccumulation mechanism remains poorly understood. In this study, we incorporated density functional theory (DFT), molecular dynamics (MD), and experiments to analyze the partitioning pathways and to establish the structure-bioaccumulation relationship.

View Article and Find Full Text PDF

Alxa Bactrian camel meat is an organic diet that provides balanced nutrition and is easy to digest and absorb. Despite its potential, it is currently underutilized. To develop a new type of camel jerky, this study utilized a single-factor design method to optimize the formula and fermentation process parameters of Alxa Bactrian camel jerky.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced materials for photodetectors are sought after for their wide spectral response, high sensitivity, and stable operation in various applications like imaging and sensing.
  • A new ultra-broadband photodetector utilizing an ultrathin 2D FeO nanoflake heterostructure has been developed, which operates effectively from visible light (405 nm) to long-wave infrared (LWIR, 10.6 μm) at room temperature.
  • The device demonstrates impressive performance metrics, including high photoresponsivity (182.8 A/W), rapid response times, and strong LWIR detection, suggesting potential for future infrared optoelectronic technology using ultrathin materials.
View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), hold great promise for next-generation nanoelectronic and nanophotonic devices. While high photoresponsivity and broad spectral coverage (UV-IR) have been reported, the slow response time of MoS photodetectors caused by their unfavorable RC characteristics is still a major limit in current devices. Once the RC limit issue is resolved, the intrinsic saturation drift velocity of electrons in TMDs (∼10 cm s) may enable GHz opto-electronic operations.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are emerging as potential candidates for constructing near-infrared (NIR) photodetectors (PDs) and artificial optoelectronic synapses due to solution processability and a tunable bandgap. However, most of the current NIR QDs-optoelectronic devices are still fabricated using QDs with incorporated harmful heavy metals of lead (Pb) and mercury (Hg), showing potential health and environment risks. In this work, we tailored eco-friendly reverse type-I ZnSe/InP QDs by copper (Cu) doping and extended the photoresponse from the visible to NIR region.

View Article and Find Full Text PDF