Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.
Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.
Background: The etiology of allergic rhinitis (AR), in which genetic and environmental factors are closely intertwined, has not yet been completely clarified. Programmed cell death 1 (PD-1) and its ligands (PD-L1 and PD-L2) regulate the immune and inflammatory responses during the development of immune-related and atopic diseases. To clarify the associations of genetic variants in PD-1, PD-L1 and PD-L2 with susceptibility to AR, gene-gene and gene-environment interactions were investigated.
View Article and Find Full Text PDFWith the increasing societal demand for sustainable and renewable energy, supercapacitors have become research hotspots. Transition metal oxides, due to their high capacitance and abundant resources, are the preferred electrode materials. However, their poor conductivity and volume changes limit performance enhancement.
View Article and Find Full Text PDFSenile osteoporosis (SOP) is a multifactorial, age-related progressive phenomenon with a considerable morbidity and mortality. IGF-1 is an important regulator of bone reconstruction and metabolism throughout life. Nevertheless, our previous study unexpectedly found there is no change in the peak bone mass with a altered IGF-1 gene expression leaded by IGF-1 c.
View Article and Find Full Text PDFAm J Otolaryngol
December 2024
Background: The purpose of the research was to examine the prevalence rates of screening for genetics and hearing simultaneously in neonates and provide scientific evidence for the beneficial application of newborn screening in the Southeast China population.
Methods: Between June 2015 and March 2023, 27,843 newborns were enrolled in the study. All participants were screened by otoacoustic emissions at 2 days of age.
ACS Appl Mater Interfaces
December 2024
Aqueous zinc-ion batteries (AZIBs) have garnered widespread attention due to their promising development and application prospects. However, progress of AZIBs has been hindered by zinc (Zn) dendrites and side reactions at the electrode-electrolyte interface (EEI). In particular, the large and uneven pores of commercial glass fiber (GF) separators lead to nonuniform Zn transport, which causes side reactions.
View Article and Find Full Text PDFThe energy industry has taken notice of zinc-iodine (Zn-I) batteries for their high safety, low cost, and attractive energy density. However, the shuttling of I by-products at cathode electrode and dendrite issues at Zn metal anode result in short cycle lifespan. Here, a tripartite synergistic optimization strategy is proposed, involving a MXene cathode host, a n-butanol electrolyte additive, and the in-situ solid electrolyte interface (SEI) protection.
View Article and Find Full Text PDFUnfavorable proton intercalation leading to the generation and shedding of side reaction products is still a major challenge for the performance of manganese-based aqueous zinc-ion batteries (AZIBs). In this study, we present a porous oxygen-deficient MnO (O-MnO) synthesized through -butyllithium reduction treatment to induce preferential Zn intercalation, thereby effectively mitigating the adverse consequences of proton intercalation for high-performance AZIBs. Remarkably, O-MnO as a cathode material for AZIBs exhibits a specific capacity of 341 mA h g at 0.
View Article and Find Full Text PDFThe search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML).
View Article and Find Full Text PDFEffective hydrogen evolution reaction (HER) under high current density and enhanced hydrogen oxidation reaction (HOR) over a wide potential range remain challenges for Ru-based electrocatalysts because its strong affinity to the adsorbed hydroxyl (OH) inhibits the supply of the adsorbed hydrogen (H). Herein, the coexisting Ru─O─Ti and Ru─Ti bonds are constructed by taking TiO crystal confined flat-Ru clusters (F-Ru@TiO) to cope with above-mentioned obstacles. The different electronegativity (χ = 1.
View Article and Find Full Text PDF"Flash heating" that transiently generates high temperatures above 1000 °C has great potential in synthesizing new materials with unprecedently properties. Up to now, the realization of "flash heating" still relies on the external power, which requires sophisticated setups for vast energy input. In this study, a mechanochemically triggered, self-powered flash heating approach is proposed by harnessing the enthalpy from chemical reactions themselves.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Redox-active lignin rich in phenolic hydroxyl groups is an ingenious charge storage material. However, its insulating nature limits the storage/release of electrons and requires the construction of electron transfer channels within it. Herein, nanoparticles (PANI/DKL-NPs) are prepared by co-assembly via π-π interactions between conducting polyaniline (PANI) and demethylated Kraft lignin (DKL) molecules for the first time, and rapid electron transfer inside DKL is achieved.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) are considered one of the promising candidates for energy storage devices due to the low cost and low redox potential of sodium. However, their implementation is hindered by sluggish kinetics and rapid capacity decay caused by inferior conductivity, lattice deterioration, and volume changes of conversion-type anode materials. Herein, we report the design of a multicore-shell anode material based on manganese selenide (MnSe) nanoparticle encapsulated N-doped carbon (MnSe@NC) nanorods.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Aqueous zinc ion batteries (AZIBs) have attracted much attention for their safety, low cost and high theoretical capacity. Nevertheless, Zn dendrites and the adverse reactions such as corrosion, hydrogen evolution and passivation on the anode affect the cycle life and stability of AZIBs. Herein, superabsorbent starch (SS) was employed on Zn foil to form an artificial interface protection layer, which inhibited the formation of dendrites by guiding the uniform deposition of Zn.
View Article and Find Full Text PDFAqueous zinc (Zn) iodine (I) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion.
View Article and Find Full Text PDFUncontrollable dendrite growth and corrosion induced by reactive water molecules and sulfate ions (SO) seriously hindered the practical application of aqueous zinc ion batteries (AZIBs). Here we construct artificial solid electrolyte interfaces (SEIs) realized by sodium and calcium bentonite with a layered structure anchored to anodes (NB@Zn and CB@Zn). This artificial SEI layer functioning as a protective coating to isolate activated water molecules, provides high-speed transport channels for Zn, and serves as an ionic sieve to repel negatively charged anions while attracting positively charged cations.
View Article and Find Full Text PDFConstructing a photocatalytic membrane and photo-Fenton reaction coupling system is a novel strategy to enhance the photocatalytic activity of the membrane and eliminate the problem of membrane contamination. Herein, a g-CN/BiMoO/PVDF photocatalytic membrane was prepared using a tannic acid-assisted in-situ deposition method. The membrane was characterized by three advantages of photocatalytic, self-cleaning, and antibacterial properties.
View Article and Find Full Text PDFObjective: To reveal the contributing effects of MTDH gene SNPs in the risk of invasive ductal breast cancer (IDC).
Patients And Methods: A case-control study was conducted, recruiting a total of 300 cases of IDC and 565 cancer-free controls from East China. Genotyping of three single-nucleotide polymorphisms (SNPs) in the MTDH gene was performed.
To explore the mechanisms and therapeutic strategies for G-quadruplex (G4) mediated diseases, it is crucial to manipulate and intervene in intracellular G4 structures using small molecular tools. While hundreds of G4 stabilizers have been developed, there is a significant gap in the availability of G4 unwinding agents. Here, we propose a strategy to disrupt G-quadruplexes by forming G-C hydrogen bonds with chemically modified cytidine trimers.
View Article and Find Full Text PDFThe energy storage capacity of porous carbon materials is closely tied to their surface structure and chemical properties. However, developing an innovative and straightforward approach to synthesize yolk-shell carbon spheres (YCs) remains a great challenge till date. Herein, we prepared a series of porous nitrogen-doped yolk-shell carbon spheres (NYCs) via a "pyrolysis-capture" method.
View Article and Find Full Text PDFSluggish kinetics and severe structural instability of manganese-based cathode materials for rechargeable aqueous zinc-ion batteries (ZIBs) lead to low-rate capacity and poor cyclability, which hinder their practical applications. Pillaring manganese dioxide (MnO) by pre-intercalation is an effective strategy to solve the above problems. However, increasing the pre-intercalation content to realize stable cycling of high capacity at large current densities is still challenging.
View Article and Find Full Text PDF