Publications by authors named "A zur Hausen"

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Introduction: Endothelial cells (ECs) play a crucial role in many treatments for cardiovascular diseases, such as blood vessel repair, tissue engineering, and drug delivery. The process of differentiating these cells is complex and involves various sources and numerous molecular and cellular events. Differentiating pluripotent stem cells (PSCs) into endothelial cells are one of the most effective sources for creating ECs in the lab and offers great potential for regenerative medicine.

View Article and Find Full Text PDF

Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels.

View Article and Find Full Text PDF

Background: Intestinal failure (IF) describes a condition of insufficient absorption capacity and general function of the gastrointestinal tract and may necessitate long-term intravenous fluid and nutrient supplementation. Quality of life (QoL) may be reduced in these patients. The aim of the study was to analyze QoL by two tools (SBS-QoL and SF-12) to elucidate which parameters impact QoL in patients with IF.

View Article and Find Full Text PDF

Introduction: Multi-omic studies have identified three molecular separated pulmonary carcinoid (PC) subgroups (A1, A2, B) with distinctive mRNA expression profiles (e.g., orthopedia homeobox protein [OTP], achaete-scute homolog [ASCL1], and hepatocyte nuclear factor 1 homeobox A [HNF1A]).

View Article and Find Full Text PDF