The shape of Au nanoparticles (NPs) plays a crucial role for applications in, amongst others, catalysis, electronic devices, biomedicine, and sensing. Typically, the deformation of the morphology of Au NPs is the most significant cause of loss of functionality. Here, we systematically investigate the thermal stability of Au nanotriangles (NTs) coated with (mesoporous) silica shells with different morphologies (core-shell (CS): Au NT@mSiO/yolk-shell (YS): Au NT@mSiO) and compare these to 'bare' nanoparticles (Au NTs), by a combination of and/or TEM techniques and spectroscopy methods.
View Article and Find Full Text PDFInvited for the cover of this issue is the group of Professor Bert Weckhuysen at Utrecht University. The image depicts the change in fluorescence color of a resorufin dye molecule when it is protonated and confined inside the micropores of zeolite-β. Read the full text of the article at 10.
View Article and Find Full Text PDFThe photoluminescence (PL) of lanthanide-doped nanocrystals can be quenched by energy transfer to vibrations of molecules located within a few nanometers from the dopants. Such short-range electronic-to-vibrational energy transfer (EVET) is often undesired as it reduces the photoluminescence efficiency. On the other hand, EVET may be exploited to extract information about molecular vibrations in the local environment of the nanocrystals.
View Article and Find Full Text PDF