Publications by authors named "A s Tikhonova"

Article Synopsis
  • T-lineage acute lymphoblastic leukemia (ALL) presents as an aggressive cancer with diverse subtypes, making traditional classification difficult.
  • A multiomics analysis of bone marrow samples revealed a specific subset of T-lineage ALL with active inflammatory and stem gene programs, showing unique biological and treatment response characteristics.
  • A computational inflammatory gene signature scoring system was developed to better classify patients, identifying a high-risk subtype that could guide targeted therapies for more effective treatment approaches.
View Article and Find Full Text PDF

Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs.

View Article and Find Full Text PDF

The composition of apples is diverse and is represented by various compounds including vitamins. When processing apple fruits into ciders, vitamins take part in numerous biochemical processes and undergo significant changes. of this research was to study the content of vitamins in apple juice and ciders produced from fruits of 30 varieties and forms of apple tree of domestic and foreign selection.

View Article and Find Full Text PDF
Article Synopsis
  • * Sirtuin 3 (SIRT3), a regulator of oxidative phosphorylation (OXPHOS), is crucial for the survival of human LSC but not for normal blood stem cells, indicating its potential as a treatment target.
  • * By studying LSC's response to SIRT3 inhibition, researchers found ways to enhance LSC death, such as disrupting cholesterol balance and combining SIRT3 inhibition with a specific cancer drug, suggesting new treatment avenues for AML.
View Article and Find Full Text PDF