Publications by authors named "A m Yashchenok"

The isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling.

View Article and Find Full Text PDF

The involvement of extracellular vesicles (EVs) in cellular communication with multifactorial and multifaceted biological activity has generated significant interest, highlighting their potential diagnostic and therapeutic applications. EVs are found in nearly all biological fluids creating a broad spectrum of where potential disease markers can be found for liquid biopsy development and what subtypes can be used for treatment of diseases. Complexity of biological fluids has generated a variety of different approaches for EV isolation and identification that may in one way or another be most optimal for research studies or clinical use.

View Article and Find Full Text PDF

Tremendous interest in research of small extracellular vesicles (sEVs) is driven by the participation of vesicles in a number of biological processes in the human body. Being released by almost all cells of the body, sEVs present in complex bodily fluids form the so-called intercellular communication network. The isolation and profiling of individual fractions of sEVs secreted by pathological cells are significant in revealing their physiological functions and clinical importance.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) have attracted tremendous interest in recent years due to their exceptional properties for therapeutic and diagnostic applications. Although much research was focused on the quantity and content of sEVs, less efforts have been put into discovering the interaction between sEVs and cells. Here we engineered multicompartment particles, termed vesicosomes, by deposition of sEVs derived from MCF7, CHO cells and human plasma onto the surface of polyelectrolyte (PE)-coated silica (SiO) microparticles.

View Article and Find Full Text PDF

We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations.

View Article and Find Full Text PDF