Background: The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes.
View Article and Find Full Text PDFEfficacy data on two malaria vaccines, RTS,S and R21, targeting circumsporozoite protein (CSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of CSP. We designed four rCSP-based vaccines in an effort to improve the diversity of the antibody response.
View Article and Find Full Text PDF