Publications by authors named "A de Taddeo"

Article Synopsis
  • - Approved vaccines are good for preventing severe COVID-19, but new variants and transmission need a stronger immune response, leading to the creation of modified live-attenuated vaccines (LAVs) that recode the SARS-CoV-2 genome.
  • - The new vaccines, called OTS-206 and OTS-228, are designed to be safe and effective, with OTS-228 showing no side effects or transmission in animal studies, and can be given intranasally.
  • - A single dose of OTS-228 not only provides strong immunity against the original SARS-CoV-2 strain but also offers broad protection against variants like Omicron, making this approach potentially valuable for other emerging viruses as well. *
View Article and Find Full Text PDF
Article Synopsis
  • The current standard for preventing rejection in vascularized composite allotransplantation (VCA) uses systemic immunosuppression, which poses significant side effects, leading to interest in local immunosuppression methods.
  • Researchers investigated a local drug delivery system for tacrolimus (TGMS-TAC) to reduce toxicity and enhance graft survival, showing promising results in a porcine model, although some rejection signs were noted.
  • Results indicated that while systemic immune responses remained stable, local tissue analysis revealed infiltration of immune cells and involvement of neutrophil extracellular traps (NETs) in the rejection process, highlighting the need for better understanding of VCA graft rejection mechanisms.
View Article and Find Full Text PDF

Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication.

View Article and Find Full Text PDF
Article Synopsis
  • The Omicron-BA.1 variant of concern became the dominant strain globally in early 2022, prompting the need for extensive research using primary cell cultures and animal models to understand its characteristics compared to the Delta variant.* -
  • In laboratory studies, Omicron-BA.1 showed increased early replication in human nasal cells but less replication in bronchial cells; however, in animal models like hamsters and ferrets, Delta variant remained more dominant.* -
  • The research revealed that the spike gene from Omicron-BA.1 leads to lower replication and pathogenicity in certain mice, while also indicating that this variant may escape immune responses generated by mRNA vaccines, contributing to its dominance over other variants.*
View Article and Find Full Text PDF