Publications by authors named "A de Koter"

Massive stars are predominantly born in stellar associations or clusters. Their radiation fields, stellar winds and supernovae strongly impact their local environment. In the first few million years of a cluster's life, massive stars are dynamically ejected and run away from the cluster at high speed.

View Article and Find Full Text PDF

Red supergiants are the most common final evolutionary stage of stars that have initial masses between 8 and 35 times that of the Sun. During this stage, which lasts roughly 100,000 years, red supergiants experience substantial mass loss. However, the mechanism for this mass loss is unknown.

View Article and Find Full Text PDF

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe).

View Article and Find Full Text PDF

Farr and Mandel reanalyze our data, finding initial mass function slopes for high-mass stars in 30 Doradus that agree with our results. However, their reanalysis appears to underpredict the observed number of massive stars. Their technique results in more precise slopes than in our work, strengthening our conclusion that there is an excess of massive stars (>30 solar masses) in 30 Doradus.

View Article and Find Full Text PDF

The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My.

View Article and Find Full Text PDF