Mycorrhizal symbioses (mycorrhizas) of Ericaceae, including ericoid mycorrhiza (ErM), have been mainly studied in the Northern Hemisphere, although the highest diversity of ericaceous plants is located in the Southern Hemisphere, where several regions remain largely unexplored. One of them is South America, which harbors a remarkably high diversity of Ericaceae (691 species and 33 genera) in a wide range of environmental conditions, and a specific mycorrhizal type called cavendishioid. In this review, we compile all available information on mycorrhizas of Ericaceae in South America.
View Article and Find Full Text PDFSouthern South American Proteaceae thrive on young volcanic substrates, which are extremely low in plant-available phosphorus (P). Most Proteaceae exhibit a nutrient-acquisition strategy based on the release of carboxylates from specialized roots, named cluster roots (CR). Some Proteaceae colonize young volcanic substrates which has been related to CR functioning.
View Article and Find Full Text PDFEmbothrium coccineum produces cluster roots (CR) to acquire sparingly soluble phosphorus (P) from the soil through the exudation of organic compounds. However, the physiological mechanisms involved in carbon drainage through its roots, as well as the gene expression involved in the biosynthesis of carboxylates and P uptake, have not been explored. In this work, we evaluated the relationship between carboxylate exudation rate and phosphoenolpyruvate carboxylase (PEPC) activity in roots of E.
View Article and Find Full Text PDFPhosphorus (P) is an essential mineral, required for crucial plant genetic, metabolic and signaling functions. Under P deficiency, normal physiological function can be disrupted, especially photosynthetic metabolism. The majority of photosynthetic studies of P stress has been on model organisms, and very little is known about plants that evolved on P deficient soils.
View Article and Find Full Text PDFPlants from the Proteaceae family can thrive in old, impoverished soil with extremely low phosphorus (P) content, such as those typically found in South Western Australia (SWA) and South Africa. The South Western (SW) Australian Proteaceae species have developed strategies to deal with P scarcity, such as the high capacity to re-mobilize P from senescent to young leaves and the efficient use of P for carbon fixation. In Southern South America, six Proteaceae species grow in younger soils than those of SWA, with a wide variety of climatic and edaphic conditions.
View Article and Find Full Text PDF