PROTACs have shown promise as a new class of therapy, with a unique mechanism of action orthogonal to traditional small molecules that are used to regulate protein activity. Their novel MOA utilizing the body's natural protein degradation machinery degrades a protein of interest rather than inhibiting its function. This strategy has several advantages over conventional small-molecule inhibitors, e.
View Article and Find Full Text PDFis the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers.
View Article and Find Full Text PDFNatural killer (NK) cells play a pivotal role in controlling cancer. Multiple extracellular receptors and internal signaling nodes tightly regulate NK activation. Cyclin-dependent kinases of the mediator complex (CDK8 and CDK19) were described as a signaling intermediates in NK cells.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs.
View Article and Find Full Text PDF