Publications by authors named "A Zifarelli"

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.

View Article and Find Full Text PDF

Here we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures.

View Article and Find Full Text PDF

In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure.

View Article and Find Full Text PDF

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (HS) in sulfur hexafluoride (SF). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.

View Article and Find Full Text PDF

A comparative analysis of two different approaches developed to deal with molecular relaxation in photoacoustic spectroscopy is here reported. The first method employs a statistical analysis based on partial least squares regression, while the second method relies on the development of a digital twin of the photoacoustic sensor based on the theoretical modelling of the occurring relaxations. Methane detection within a gas matrix of synthetic air with variable humidity level is selected as case study.

View Article and Find Full Text PDF