Publications by authors named "A Zhevlakov"

In this study, we demonstrate the potential of the NA64 experiment at CERN SPS to search for New Physics processes involving transitions after the collision of 100 GeV electrons with target nuclei. A new Dark Sector leptonic portal in which a scalar boson could be produced in the lepton-flavor-changing bremsstrahlung-like reaction, , is used as benchmark process. In this work, we develop a realistic Monte Carlo simulation of the NA64 experimental setup implementing the differential and total production cross-section computed at exact tree-level and applying the Weiszäcker-Williams phase space approximation.

View Article and Find Full Text PDF

We present the first results from a proof-of-concept search for dark sectors via invisible decays of pseudoscalar η and η^{'} mesons in the NA64h experiment at the CERN SPS. Our novel technique uses the charge-exchange reaction of 50 GeV π^{-} on nuclei of an active target as the source of neutral mesons. The η,η^{'}→invisible events would exhibit themselves via a striking signature-the complete disappearance of the incoming beam energy in the detector.

View Article and Find Full Text PDF

We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160  GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum <80  GeV/c in the final state, accompanied by missing energy, i.

View Article and Find Full Text PDF

Thermal dark matter models with particle χ masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV χ production through the interaction mediated by a new vector boson, called the dark photon A^{'}, in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS.

View Article and Find Full Text PDF