Publications by authors named "A Zerihun"

The effectiveness of fungicides to control foliar fungal crop diseases is being diminished by the increasing spread of resistance to fungicides. One approach that may help to maintain efficacy is remediation of resistant populations by sensitive ones. However, the success of such approaches can be compromised by re-incursion of resistance through aerial spore dispersal, although knowledge of localized gene flow is lacking.

View Article and Find Full Text PDF

Background: Agricultural pesticide use in sub-Saharan Africa has doubled over the past three decades, with a greater relative increase for fungicides. As pesticide inputs continue to rise, so does the potential for the development of resistance. Here, we report on a survey conducted to understand pesticide resistance awareness, pesticide-use knowledge and practices of growers and agricultural extension officers (AEOs) in the cereals growing-belt of northern Ghana, with emphasis on fungicides.

View Article and Find Full Text PDF

Growers often use alternations or mixtures of fungicides to slow down the development of resistance to fungicides. However, within a landscape, some growers will implement such resistance management methods, whereas others do not, and may even apply solo components of the resistance management program. We investigated whether growers using solo components of resistant management programs affect the durability of disease control in fields of those who implement fungicide resistance management.

View Article and Find Full Text PDF

Fungicide resistance in foliar fungal pathogens is an increasing challenge to crop production. Yield impacts due to loss of fungicide efficacy may be reduced through effective surveillance and appropriate management intervention. For stubble-borne pathogens, off-season crop residues may be used to monitor fungicide resistance to inform pre-planting decisions; however, appropriate sampling strategies and support sizes for crop residues have not previously been considered.

View Article and Find Full Text PDF

Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis.

View Article and Find Full Text PDF