Targeted Radionuclide Therapy (TRT) is a medical technique exploiting radionuclides to combat cancer growth and spread. TRT requires a supply of radionuclides that are currently produced by either cyclotrons or nuclear research reactors. In this context, the ISOLPHARM project investigates the production of innovative radionuclides for medical applications.
View Article and Find Full Text PDFBackground: Silver-111 is a promising β-emitting radioisotope with ideal characteristics for targeted radionuclide therapy and associated single photon emission tomography imaging. Its decay properties closely resemble the clinically established lutetium-177, making it an attractive candidate for therapeutic applications. In addition, the clinical value of silver-111 is further enhanced by the existence of the positron-emitting counterpart silver-103, thus imparting a truly theranostic potential to this element.
View Article and Find Full Text PDFSPES (Selective Production of Exotic Species) is a second generation facility for the production of radioactive ion beams that is going to be commissioned at the Laboratori Nazionali di Legnaro of INFN at Legnaro, Padua, Italy. Radioactive neutron-rich isotopes are expected to be produced by nuclear fission induced by a 40 MeV, 200 μA primary proton beam impinging on a UC target. The expected reaction rate is about 10 fission/s.
View Article and Find Full Text PDFRadio Pharmaceutical Therapy (RPT) comes forth as a promising technique to treat a wide range of tumors while ensuring low collateral damage to nearby healthy tissues. This kind of cancer therapy exploits the radiation following the decay of a specific radionuclide to deliver a lethal dose to tumor tissues. In the framework of the ISOLPHARM project of INFN, Ag was recently proposed as a promising core of a therapeutic radiopharmaceutical.
View Article and Find Full Text PDFThe Isotope Separation On-Line (ISOL) technique is today established as one of the primary methods to produce high-intensity and high-quality radioactive beams. This technique produces, for a given amount of the desired isotope, many orders of magnitude of other radioactive species. Due to the activation generated by interactions of the primary beam, intense neutron fields, and deposition of the produced radioactive ions inside beam line elements, an ISOL facility in operation becomes an intense radioactive source.
View Article and Find Full Text PDF