We report on the experimental measurement of the dispersion relation of the density and spin collective excitation modes in an elongated two-component superfluid of ultracold bosonic atoms. Our parametric spectroscopic technique is based on the external modulation of the transverse confinement frequency, leading to the formation of density and spin Faraday waves. We show that the application of a coherent coupling between the two components reduces the phase symmetry and gives a finite mass to the spin modes.
View Article and Find Full Text PDFWe probe photoinduced loss for chemically stable bosonic ^{23}Na^{87}Rb and ^{23}Na^{39}K molecules in chopped optical dipole traps, where the molecules spend a significant time in the dark. We expect the effective two-body decay to be significantly suppressed due to the small expected complex lifetimes of about 13 and 6 μs for ^{23}Na^{87}Rb and ^{23}Na^{39}K, respectively. However, instead we do not observe any suppression of the two-body loss in parameter ranges where large loss suppressions are expected.
View Article and Find Full Text PDFWe report the creation of ultracold bosonic dipolar ^{23}Na^{39}K molecules in their absolute rovibrational ground state. Starting from weakly bound molecules immersed in an ultracold atomic mixture, we coherently transfer the dimers to the rovibrational ground state using an adiabatic Raman passage. We analyze the two-body decay in a pure molecular sample and in molecule-atom mixtures and find an unexpectedly low two-body decay coefficient for collisions between molecules and ^{39}K atoms in a selected hyperfine state.
View Article and Find Full Text PDFIn this paper, we present a high-resolution, simple, and versatile imaging system for single-site resolved imaging of atoms in optical lattices. The system, which relies on an adaptable infinite conjugate two-lens design, has a numerical aperture of 0.52, which can in the ideal case be further extended to 0.
View Article and Find Full Text PDFWe derive the complete mixing-demixing phase-diagram relevant to a bosonic binary mixture confined in a ring trimer and modeled within the Bose-Hubbard picture. The mixing properties of the two quantum fluids, which are shown to be strongly affected by the fragmented character of the confining potential, are evaluated by means of a specific indicator imported from Statistical Thermodynamics and are shown to depend only on two effective parameters incorporating the asymmetry between the heteronuclear species. To closely match realistic experimental conditions, our study is extended also beyond the pointlike approximation of potential wells by describing the systems in terms of two coupled Gross-Pitaevskii equations.
View Article and Find Full Text PDF