An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth.
View Article and Find Full Text PDFFragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene.
View Article and Find Full Text PDFFanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies.
View Article and Find Full Text PDFThe natural history of Fanconi anemia remains hard to establish because of its rarity and its heterogeneous clinical presentation; since 1994, the Italian Fanconi Anemia Registry has collected clinical, epidemiological and genetic data of Italian Fanconi Anemia patients. This registry includes 180 patients with a confirmed diagnosis of Fanconi anemia who have either been enrolled prospectively, at diagnosis, or later on. After enrollment, follow-up data were periodically collected to assess the clinical course, possible complications and long-term survival; the median follow up was 15.
View Article and Find Full Text PDFInt J Mol Sci
November 2014
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors.
View Article and Find Full Text PDF