The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium.
View Article and Find Full Text PDFSpin-momentum locking of surface states has attracted great interest in recent years due to envisioned technological applications in the field of spintronics. Normal metal surfaces like W(1 1 0) and Ir(1 1 1) show surface states with energy dispersions and spin-polarization textures, which are reminiscent of topologically non-trivial surface states. In order to understand this phenomenon the connection of bulk and surface states has to be explored.
View Article and Find Full Text PDF