Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics.
View Article and Find Full Text PDFGenetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain.
View Article and Find Full Text PDFChronic wounds, such as venous leg ulcers, are difficult to treat and can reduce the quality of life for patients. Clinical trials have been conducted to identify the most effective venous leg ulcer treatments and the clinical factors that may indicate whether a wound will successfully heal. More recently, mathematical modelling has been used to gain insight into biological factors that may affect treatment success but are difficult to measure clinically, such as the rate of oxygen flow into wounded tissue.
View Article and Find Full Text PDF