Publications by authors named "A Zambonin Zallone"

The primitive neurohypophyseal nonapeptide oxytocin (OXT) has established functions in parturition, lactation, appetite, and social behavior. We have shown that OXT has direct actions on the mammalian skeleton, stimulating bone formation by osteoblasts and modulating the genesis and function of bone-resorbing osteoclasts. We deleted OXT receptors (OXTRs) selectively in osteoblasts and osteoclasts using and mice, respectively.

View Article and Find Full Text PDF

This chapter describes the isolation, culture, and staining of osteoclasts. The key advantages of this assay are that it allows direct measurement of osteoclast number, bone resorption, as well as yielding good quantities of osteoclasts at defined stages of formation for molecular analysis. An additional focus of this chapter will be the generation of osteoclasts from less conventional animal species and cell lines.

View Article and Find Full Text PDF

Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat.

View Article and Find Full Text PDF

Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin-regulated water reabsorption via aquaporin-2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2-mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided.

View Article and Find Full Text PDF

The long-held belief that pituitary hormones act solely on master targets was first questioned when we documented G protein-coupled receptors for thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotrophic hormone, oxytocin, and vasopressin on bone cells. These evolutionarily conserved hormones and their receptors are known to have primitive roles, and exist in invertebrate species as far down as coelenterates. It is not surprising therefore that each such hormone has multiple hitherto unrecognized functions in mammalian integrative physiology, and hence, becomes a potential target for therapeutic intervention.

View Article and Find Full Text PDF