Publications by authors named "A Zalesky"

Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions.

View Article and Find Full Text PDF

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity.

View Article and Find Full Text PDF

An anomalous pattern of structural covariance has been reported in schizophrenia, which has been suggested to represent connectome changes during brain maturation and neuroprogressive processes. It remains unclear whether similar differences exist in a clinical high-risk state for psychosis, and if they are associated with a prodromal phenotype and/or later psychosis onset. This multicenter magnetic resonance imaging study cross-sectionally examined structural covariance in a large at-risk mental state (ARMS) sample with different outcomes.

View Article and Find Full Text PDF

Meditation is a family of ancient and contemporary contemplative mind-body practices that can modulate psychological processes, awareness, and mental states. Over the last 40 years, clinical science has manualised meditation practices and designed various meditation interventions (MIs), that have shown therapeutic efficacy for disorders including depression, pain, addiction, and anxiety. Over the past decade, neuroimaging has examined the neuroscientific basis of meditation practices, effects, states, and outcomes for clinical and non-clinical populations.

View Article and Find Full Text PDF