Spirocyclic alkyl amino carbene (SCAAC) Ru complexes demonstrate outstanding activity and selectivity in ethenolysis of methyl oleate (MO) or fatty acid methyl esters (FAMEs), and 5,6-dimethoxyindane derivative was the most active catalyst to date. For the further catalyst design, we proposed modifying the spirocyclic fragment by fusion of saturated carbo- or heterocycle, linked to the 5,6-positions of indane or 6,7- positions of tetralin. Another suggested way of the modification of SCAAC complex was the insertion of chromane fragment to the carbene ligand.
View Article and Find Full Text PDFIn this work, a set of analytical techniques, including scanning electron microscopy (SEM), Raman scattering spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray microanalysis (EDX) and cyclic voltammetry (CV), were used to study the impact of high-energy He ion irradiation on the structural and electrochemical characteristics of sulfur-containing multi-walled carbon nanotubes (S-MWCNTs) placed on a titanium substrate. The results indicate that the ion beam treatment of the S-MWCNT system led to an increase in the level of imperfections on the surface structures of the nanotubes due to the formation of point defects on their outer walls and the appearance of oxygen-containing functional groups, including SO groups, near these defects. At the same time, a significant increase in the sulfur concentration (by 6.
View Article and Find Full Text PDFStereoselective reduction of dehydroamino acids is a common biosynthetic strategy to introduce d-amino acids into peptidic natural products. The reduction, often observed during the biosynthesis of lanthipeptides, is performed by dedicated dehydroamino acid reductases (dhAARs). Enzymes from the three known dhAAR families utilize nicotinamide, flavin, or FH coenzymes as hydride donors, and little is known about the catalysis performed by the latter family proteins.
View Article and Find Full Text PDFThere is a demand for site-selective peptide/protein conjugation chemistry that is fully reversible in a stimulus-responsive manner. The contemporary methods for site-selective protein modification enable the preparation of homogeneous protein-small molecule conjugates, which are indispensable for drug delivery and chemical biology purposes, but such chemistries are usually irreversible. In contrast, the existing reversible protein labeling techniques are generally not site-selective.
View Article and Find Full Text PDF