Publications by authors named "A Yu Dolganov"

Electroretinography (ERG) is a non-invasive method of assessing retinal function by recording the retina's response to a brief flash of light. This study focused on optimizing the ERG waveform signal classification by utilizing Short-Time Fourier Transform (STFT) spectrogram preprocessing with a machine learning (ML) decision system. Several window functions of different sizes and window overlaps were compared to enhance feature extraction concerning specific ML algorithms.

View Article and Find Full Text PDF

The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control.

View Article and Find Full Text PDF

The continuous advancements in healthcare technology have empowered the discovery, diagnosis, and prediction of diseases, revolutionizing the field. Artificial intelligence (AI) is expected to play a pivotal role in achieving the goals of precision medicine, particularly in disease prevention, detection, and personalized treatment. This study aims to determine the optimal combination of the mother wavelet and AI model for the analysis of pediatric electroretinogram (ERG) signals.

View Article and Find Full Text PDF

Background: The electroretinogram is a clinical test used to assess the function of the photoreceptors and retinal circuits of various cells in the eye, with the recorded waveform being the result of the summated response of neural generators across the retina.

Methods: The present investigation involved an analysis of the electroretinogram waveform in both the time and time-frequency domains through the utilization of the discrete wavelet transform and continuous wavelet transform techniques. The primary aim of this study was to monitor and evaluate the effects of treatment in a New Zealand rabbit model of endophthalmitis via electroretinogram waveform analysis and to compare these with normal human electroretinograms.

View Article and Find Full Text PDF

The described research examined the adsorption of fluoride ions from solution immobilized onto an aluminum oxide-coated bacterial cellulose-based composite material in which aluminum oxide had been deposited using ALD technology. The kinetic regularities of the adsorption of fluoride ions from the solution as well as the mechanism of the processes were analyzed. The established equations show that the dynamics of adsorption correspond to first-order kinetics.

View Article and Find Full Text PDF