Publications by authors named "A Yevenes"

Iron is very important in many biological processes and the ferritin protein family has evolved to store iron and to maintain cellular iron homeostasis. The deletion of the coding gene for the H subunit of ferritin leads to early embryonic death in mice and mutations in the gene for the L subunits in humans has been observed in neurodegenerative diseases, such as neuroferritinopathy. Thus, understanding how ferritin works is imperative and many studies have been conducted to delineate the molecular mechanism of ferritins and bacterioferritins.

View Article and Find Full Text PDF

Cationic dendrimers, such as PAMAM, are known to be positively charged at neutral pH allowing their unspecific interaction with proteins and other cellular components. Especially, ferritin, which has an important role in iron homeostasis, presents a negative electrostatic potential at the 3-fold channel. This channel is important in the functionality of ferritin because it allows the iron entry into its inner cavity.

View Article and Find Full Text PDF

Background: PET/CT (Positron Emission Tomography/Computed Tomography) is widely used in nodal and metastatic staging of lung cancer patients.

Aim: To analyze PET/CT detection of metastatic disease in patients with lung cancer.

Material And Methods: We reviewed retrospectively F18Fluorodeoxyglucose PET/CT scans performed between December 2008 and December 2013.

View Article and Find Full Text PDF

Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues.

View Article and Find Full Text PDF

The recombinant Chlorobium tepidum ferritin (rCtFtn) is able to oxidize iron using ferroxidase activity but its ferroxidase activity is intermediate between the H-chain human ferritin and the L-chain human ferritin. The rCtFtn has an unusual C-terminal region composed of 12 histidine residues, as well as aspartate and glutamate residues. These residues act as potential metal ion ligands, and the rCtFtn homology model predicts that this region projects inside the protein cage.

View Article and Find Full Text PDF