In this study, we explore the potential of 1D ZnO-Au nanocomposites as innovative label-free photoluminescence (PL) immunosensors for rapidly detecting Listeria monocytogenes, a significant concern in food safety. We synthesized ZnO nanorods (ZnO_NR) and nanowires (ZnO_NW), followed by Au deposition to create ZnO_NR/Au and ZnO_NW/Au nanocomposites. Our analyses, including SEM, TEM, Raman spectroscopy, and photoluminescence (PL), revealed distinct structural and optical properties of these nanocomposites, especially noting the superior crystallinity and stability of ZnO_NR/Au.
View Article and Find Full Text PDFSynthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair.
View Article and Find Full Text PDFMaxillary sinus augmentation is a commonly used procedure for the placement of dental implants. However, the use of natural and synthetic materials in this procedure has resulted in postoperative complications ranging from 12% to 38%. To address this issue, we developed a novel calcium deficient HA/β-TCP bone grafting nanomaterial using a two-step synthesis method with appropriate structural and chemical parameters for sinus lifting applications.
View Article and Find Full Text PDFChitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted.
View Article and Find Full Text PDFThe application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique.
View Article and Find Full Text PDF