An influence of carbon nanotubes and carbon nanospheres coated by Au-Pd and Pt on the microstructure of solder/copper joints at room temperature and after aging at sub-zero temperature. The carbon nanosized admixtures were mixed with ternary Sn3.0Ag0.
View Article and Find Full Text PDFThe main number of current researches has been focused on the microstructure and mechanical properties of the Sn-based Sn-Ag-Cu-based solders, while various kinds of nanosized particles have been added. The synthesis and handling of ceramic nanosized powder are much easier than of metal nanoparticles. In addition, metal nanoparticles solved in solder joints during the soldering process or by thermal aging could behave as an alloying element similar to bulk metal additions, while ceramic nanoparticles retain their chemically inactive behavior in various thermal, thermo-mechanical, and electrical constraints.
View Article and Find Full Text PDFThe effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg(CoPd), Mg(CoPd), and Mg(CoPd) alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.
View Article and Find Full Text PDFExperimental results are presented here obtained by a drop calorimetric method, in which Ni and Cu particles, both in bulk and nanosized form, were dropped into a liquid Sn-3.8Ag-0.7Cu solder alloy (in wt%).
View Article and Find Full Text PDFNanoscale Res Lett
December 2017
The present research focused on the synthesis of Ni and Ni-Sn nanoparticles via a chemical reduction method using hydrazine hydrate. The syntheses were performed applying highly purified water or diethylene glycol as solvent. The produced nanoparticles were characterized by scanning electron microscopy and powder X-ray diffraction.
View Article and Find Full Text PDF