The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.
View Article and Find Full Text PDFBackground: Significant variability in outcomes after left ventricular assist device (LVAD) implantation emphasize the importance of accurately assessing patients' risk before surgery. This study assesses the Machine Learning Assessment of Risk and Early Mortality in Heart Failure (MARKER-HF) mortality risk model, a machine learning-based tool using 8 clinical variables, to predict post-LVAD implantation mortality and its prognostic enhancement over the Interagency Registry of Mechanically Assisted Circulatory Support (INTERMACS) profile.
Methods: Analyzing 25,365 INTERMACS database patients (mean age 56.
The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.
View Article and Find Full Text PDFUsing proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .
View Article and Find Full Text PDF