An imbalance between production and excretion of amyloid β peptide (Aβ) in the brain tissues of Alzheimer's disease (AD) patients leads to Aβ accumulation and the formation of noxious Aβ oligomers/plaques. A promising approach to AD prevention is the reduction of free Aβ levels by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). We previously demonstrated the ability of specific low-molecular-weight ligands (LMWLs) in HSA to improve its affinity for Aβ.
View Article and Find Full Text PDFPlant α-l-arabinofuranosidases remove terminal arabinose from arabinose-containing substrates such as plant cell wall polysaccharides, including arabinoxylans, arabinogalactans, and arabinans. In plants, de-arabinosylation of cell wall polysaccharides accompanies different physiological processes such as fruit ripening and elongation growth. In this report, we address the diversity of plant α-l-arabinofuranosidases of the glycoside hydrolase (GH) family 51 through their phylogenetic analysis as well as their structural features.
View Article and Find Full Text PDFCaveolin-1 is a cholesterol-binding scaffold protein, which is localized in detergent-resistant membrane (DRM) rafts and interacts with components of signal transduction systems, including visual cascade. Among these components are neuronal calcium sensors (NCSs), some of which are redox-sensitive proteins that respond to calcium signals by modulating the activity of multiple intracellular targets. Here, we report that the formation of the caveolin-1 complex with recoverin, a photoreceptor NCS serving as the membrane-binding regulator of rhodopsin kinase (GRK1), is a redox-dependent process.
View Article and Find Full Text PDFThe deposition of amyloid-β peptide (Aβ) in the brain is a critical event in the progression of Alzheimer's disease (AD). This Aβ deposition could be prevented by directed enhancement of Aβ binding to its natural depot, human serum albumin (HSA). Previously, we revealed that specific endogenous ligands of HSA improve its affinity to monomeric Aβ.
View Article and Find Full Text PDFPlant cell enlargement is coupled to dynamic changes in cell wall composition and properties. Such rearrangements are provided, besides the differential synthesis of individual cell wall components, by enzymes that modify polysaccharides . To reveal enzymes that may contribute to these modifications and relate them to stages of elongation growth in grasses, we carried out a transcriptomic study of five zones of the primary maize root.
View Article and Find Full Text PDF