Publications by authors named "A Y Kovalevsky"

We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.

View Article and Find Full Text PDF

SARS-CoV-2 propagation under nirmatrelvir and ensitrelvir pressure selects for main protease (MPro) drug-resistant mutations E166V (DRM2), L50F/E166V (DRM3), E166A/L167F (DRM4), and L50F/E166A/L167F (DRM5). DRM2-DRM5 undergoes N-terminal autoprocessing to produce mature MPro with dimer dissociation constants () 2-3 times larger than that of the wildtype. Co-selection of L50F restores catalytic activity of DRM2 and DRM4 from ∼10 to 30%, relative to that of the wild-type enzyme, without altering .

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) is a key enzyme in the one-carbon metabolic pathway, utilizing the vitamin B derivative pyridoxal 5'-phosphate (PLP) and vitamin B derivative tetrahydrofolate (THF) coenzymes to produce essential biomolecules. Many types of cancer utilize SHMT in metabolic reprogramming, exposing the enzyme as a compelling target for antimetabolite chemotherapies. In pursuit of elucidating the catalytic mechanism of SHMT to aid in the design of SHMT-specific inhibitors, we have used room-temperature neutron crystallography to directly determine the protonation states in a model enzyme SHMT (SHMT), which exhibits a conserved active site compared to human mitochondrial SHMT2 (hSHMT2).

View Article and Find Full Text PDF

The assembly of two monomeric constructs spanning segments 1-199 (MPro) and 10-306 (MPro) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro and MPro detectable by analytical ultracentrifugation and native mass estimation by light scattering.

View Article and Find Full Text PDF
Article Synopsis
  • Material thermal conductivity is important for applications such as thermal management and energy harvesting, and understanding the effects of grain boundaries is essential for optimizing material properties.
  • This study presents a new technique for measuring thermal resistance at grain boundaries using a temperature-sensitive scanning probe, achieving high spatial resolution (about 100 nm) and notable sensitivity (2 × 10 K m W) on specific ceramics.
  • Despite challenges in improving sensitivity and measurement material requirements, this method allows for detailed analysis of thermal resistance at the level of individual grain boundaries, which could enhance material design and applications in various microstructured materials.
View Article and Find Full Text PDF