Publications by authors named "A Y Fouda"

Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.

View Article and Find Full Text PDF

This study examined the phytochemical profile and biomedical activities of , a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.

View Article and Find Full Text PDF

Objectives: To compare the flexural strength and modulus of denture base resins manufactured by conventional methods, 3-dimensional (3D) printing, and computer-aided design and computer-aided manufacturing (CAD/CAM) milling using 3-point bending (3PB) and 4-point bending (4PB) methods after simulated aging.

Methods: Ninety bars (64 ×10 ×3.3 mm) were prepared from heat-polymerized (Lucitone-199), CAD/CAM milled (G-CAM), and 3D-printed (Denturetec) denture base resins (n = 30 per material).

View Article and Find Full Text PDF

Purpose: To compare digitally fabricated complete dentures to conventionally fabricated dentures using patient- and clinician-reported outcome measures.

Methods: This review was structured according to PRISMA guidelines with the protocol registered in the PROSPERO database (CRD42024526069). An electronic search of the databases with a defined search strategy was completed within PubMed/MEDLINE and Web of Science from January 2000 to March 2024.

View Article and Find Full Text PDF

This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.

View Article and Find Full Text PDF