Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems.
View Article and Find Full Text PDFSense of joint agency (SoJA) is the sense of control experienced by humans when acting with others to bring about changes in the shared environment. SoJA is proposed to arise from the sensorimotor predictive processes underlying action control and monitoring. Because SoJA is a ubiquitous phenomenon occurring when we perform actions with other humans, it is of great interest and importance to understand whether-and under what conditions-SoJA occurs in collaborative tasks with humanoid robots.
View Article and Find Full Text PDFIn the last decade, scientists investigating human social cognition have started bringing traditional laboratory paradigms more "into the wild" to examine how socio-cognitive mechanisms of the human brain work in real-life settings. As this implies transferring 2D observational paradigms to 3D interactive environments, there is a risk of compromising experimental control. In this context, we propose a methodological approach which uses humanoid robots as proxies of social interaction partners and embeds them in experimental protocols that adapt classical paradigms of cognitive psychology to interactive scenarios.
View Article and Find Full Text PDFCognitive processes deal with contradictory demands in social contexts. On the one hand, social interactions imply a demand for cooperation, which requires processing social signals, and on the other, demands for selective attention require ignoring irrelevant signals, to avoid overload. We created a task with a humanoid robot displaying irrelevant social signals, imposing conflicting demands on selective attention.
View Article and Find Full Text PDFIn our daily lives, we are continually involved in decision-making situations, many of which take place in the context of social interaction. Despite the ubiquity of such situations, there remains a gap in our understanding of how decision-making unfolds in social contexts, and how communicative signals, such as social cues and feedback, impact the choices we make. Interestingly, there is a new social context to which humans are recently increasingly more frequently exposed-social interaction with not only other humans but also artificial agents, such as robots or avatars.
View Article and Find Full Text PDF