Annu Int Conf IEEE Eng Med Biol Soc
October 2016
Spatially high resolved neurophysiological data commonly pose a computational and analytical problem for the identification of functional networks in the human brain. We introduce a multivariate linear Granger Causality approach with an embedded dimension reduction that enables the computation of brain networks at the large scale. In order to grasp the information about connectivity patterns contained in the resulting high-dimensional directed networks, we furthermore propose the inclusion of module detection methods from network theory that can help to identify functionally associated brain areas.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
High dimensional functional MRI data in combination with a low temporal resolution imposes computational limits on classical Granger Causality analyses with respect to a large-scale representations of functional interactions in the brain. To overcome these limitations and exploit information inherent in resulting brain connectivity networks at the large scale, we propose a multivariate Granger Causality approach with embedded dimension reduction. Using this approach, we computed binary connectivity networks from resting state fMRI images and analyzed them with respect to network module structure, which might be linked to distinct brain regions with an increased density of particular interaction patterns as compared to inter-module regions.
View Article and Find Full Text PDFAn application of an unsupervised neural network-based computer-aided diagnosis (CAD) system is reported for the detection and characterization of small indeterminate breast lesions, average size 1.1 mm, in dynamic contrast-enhanced MRI. This system enables the extraction of spatial and temporal features of dynamic MRI data and additionally provides a segmentation with regard to identification and regional subclassification of pathological breast tissue lesions.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008