Publications by authors named "A Wieck"

Article Synopsis
  • The study focuses on achieving precise control of a quantum bit (qubit) within quantum dots, an important aspect for advancing photonic quantum information technologies.
  • Researchers have successfully demonstrated the ability to perform arbitrary rotations on a hole orbital qubit using short optical pulses, allowing for direct phase control.
  • This method utilizes a process called stimulated Raman transitions, enabling fine-tuned control over the angles of the Bloch vector, making orbital states in solid-state quantum emitters useful for fast quantum information processing.
View Article and Find Full Text PDF

Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed in this work involve non-contact frequency domain pump-probe thermoreflectance (FDTR) and photothermal radiometry (PTR) methods for the ultraprecise determination of in-plane and cross-plane thermal transport properties.

View Article and Find Full Text PDF

A promising route towards the deterministic creation and annihilation of single-phonons is to couple a single-photon emitter to a mechanical resonator. The challenge lies in reaching the resolved-sideband regime with a large coupling rate and a high mechanical quality factor. We achieve this by coupling self-assembled InAs quantum dots to a small mode-volume phononic-crystal resonator with mechanical frequency Ω/2π = 1.

View Article and Find Full Text PDF

A quantum emitter interacting with photons in a single optical-mode constitutes a one-dimensional atom. A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates. Achieving a high coupling efficiency (β factor) and low dephasing is challenging.

View Article and Find Full Text PDF

Deterministic photon sources allow long-term advancements in quantum optics. A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode. By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized.

View Article and Find Full Text PDF