Publications by authors named "A Wichert"

The book , by Peter Wittek, made quantum machine learning popular to a wider audience. The promise of quantum machine learning for big data is that it will lead to new applications due to the exponential speed-up and the possibility of compressed data representation. However, can we really apply quantum machine learning for real-world applications? What are the advantages of quantum machine learning algorithms in addition to some proposed artificial problems? Is the promised exponential or quadratic speed-up realistic, assuming that real quantum computers exist? Quantum machine learning is based on statistical machine learning.

View Article and Find Full Text PDF

It is generally assumed that the brain uses something akin to sparse distributed representations. These representations, however, are high-dimensional and consequently they affect classification performance of traditional Machine Learning models due to the "curse of dimensionality". In tasks for which there is a vast amount of labeled data, Deep Networks seem to solve this issue with many layers and a non-Hebbian backpropagation algorithm.

View Article and Find Full Text PDF

In computer vision research, convolutional neural networks (CNNs) have demonstrated remarkable capabilities at extracting patterns from raw pixel data, achieving state-of-the-art recognition accuracy. However, they significantly differ from human visual perception, prioritizing pixel-level correlations and statistical patterns, often overlooking object semantics. To explore this difference, we propose an approach that isolates core visual features crucial for human perception and object recognition: color, texture, and shape.

View Article and Find Full Text PDF

One of the most well established brain principles, Hebbian learning, has led to the theoretical concept of neural assemblies. Based on it, many interesting brain theories have spawned. Palm's work implements this concept through multiple binary Willshaw associative memories, in a model that not only has a wide cognitive explanatory power but also makes neuroscientific predictions.

View Article and Find Full Text PDF
Quantum Lernmatrix.

Entropy (Basel)

May 2023

We introduce a quantum Lernmatrix based on the Monte Carlo Lernmatrix in which units are stored in the quantum superposition of log2(n) units representing On2log(n)2 binary sparse coded patterns. During the retrieval phase, quantum counting of ones based on Euler's formula is used for the pattern recovery as proposed by Trugenberger. We demonstrate the quantum Lernmatrix by experiments using .

View Article and Find Full Text PDF