Publications by authors named "A Weismann"

The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.

View Article and Find Full Text PDF

Indium(iii) phthalocyanine chloride deposited on Pb(100) is studied by scanning tunnelling spectroscopy at cryogenic temperatures. The Cl ions are dissociated and the remaining indium phthalocyanine (InPc) is observed in two states with the metal ion pointing to (↓) or away (↑) from the substrate. Isolated molecules and islands with a superstructure and a unit cell of four inequivalent molecules, namely one InPc↑ and three InPc↓ in different sites, are observed.

View Article and Find Full Text PDF

Submonolayer amounts of chloroaluminum-phthalocyanine on Cu(100) were studied with scanning tunneling spectroscopy. The molecule can be prepared in a fourfold symmetric state whose conductance spectrum exhibits a zero-bias feature similar to a Kondo resonance. In magnetic fields, however, this resonance splits far more than expected from the spin of a single electron.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted on a Nickel (II) porphyrin complex displaying spin crossover using scanning tunneling microscopy at a very low temperature (0.3 K) on a lead (Pb) substrate.
  • The research found that strong interactions between different chemical groups in the complex led to the formation of molecular chains and altered the surface structure of the substrate.
  • Tunneling spectroscopy analysis indicated spin-flip excitations in the molecular system, and high magnetic field measurements revealed the orientation of the complex's hard anisotropy axis in relation to the substrate surface.
View Article and Find Full Text PDF

Spin-crossover compounds can be switched between two stable states with different magnetic moments, conformations, electronic, and optical properties, which opens appealing perspectives for technological applications including miniaturization down to the scale of single molecules. Although control of the spin states is crucial their direct identification is challenging in single-molecule experiments. Here we investigate the spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl))] on a Cu(111) surface with scanning tunneling microscopy and density functional theory calculations.

View Article and Find Full Text PDF