Publications by authors named "A Wehenkel"

Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.

View Article and Find Full Text PDF

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

Computational simulations are widely adopted in cardiovascular biomechanics because of their capability of producing physiological data otherwise impossible to measure with non-invasive modalities.This study presents openBF, a computational library for simulating the blood dynamics in the cardiovascular system.openBF adopts a one-dimensional viscoelastic representation of the arterial system, and is coupled with zero-dimensional windkessel models at the outlets.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers synthesized triazole-containing compounds that showed strong antibacterial effects, especially one named BDM71403, which was found to be more effective than the reference drug, gepotidacin.
  • * Detailed structural studies using cryo-electron microscopy revealed how BDM71403 interacts with DNA gyrase and DNA, providing insights for future antibiotic development to combat resistant bacteria.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Corynebacteriales, which have a unique outer membrane structure made of mycolic acids, and explores the mysterious 'S-layer' that enhances this membrane.
  • - Researchers isolated the PS2 S-layer and used advanced 3D cryoEM techniques to reveal its structure, consisting of hexameric core units and trimeric lattice arrangements that contribute to a semipermeable membrane.
  • - The findings provide insights into S-layer functions and evolution within Corynebacteriales, suggesting potential for developing bioengineered materials that utilize these membrane properties.
View Article and Find Full Text PDF