Atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality worldwide, is driven by endothelial cell inflammatory activation and counter-balanced by anti-inflammatory transcription factors Klf2 and Klf4 (Klf2/4). Understanding vascular endothelial inflammation to develop effective treatments is thus essential. Here, we identify, Polycomb Repressive Complex (PRC) 2, which blocks gene transcription by trimethylating histone3 Lysine27 in gene promoter/enhancers, as a potent, therapeutically targetable determinant of vascular inflammation and ASCVD progression.
View Article and Find Full Text PDFThe immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated.
View Article and Find Full Text PDFAn accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li, Na, K, Rb, Cs, and Cl) and common functional groups found in proteins and nucleic acids.
View Article and Find Full Text PDF