Multielectron capture processes observed in low energy collisions of bare ions with target atoms open insight into electron correlations in electromagnetic fields. Radiative double electron capture (RDEC) provides the simplest tool for investigation of such processes. Here, the experimental observation of the RDEC process in collisions of O8+ ions with thin carbon films is presented and the RDEC cross section value obtained is compared with recent theoretical calculations.
View Article and Find Full Text PDFRadiative recombination transitions into the ground state of cooled bare and hydrogenlike uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248+/-9 eV.
View Article and Find Full Text PDFStrong evidence has been found for enhanced multiple electron capture into 46 MeV/u Pb81+ with a significant contribution from the entrance surface of thin carbon foils. Capture of up to five electrons has been observed. The multiple electron capture yield is found to increase with decreasing target thickness for thin targets.
View Article and Find Full Text PDFRadiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel.
View Article and Find Full Text PDFThe Lyman- alpha transitions of hydrogenlike uranium associated with electron capture were measured in collisions of stored bare U (92+) ions with gaseous targets at the storage ring ESR. By applying the deceleration technique, the experiment was performed at slow collision energies in order to reduce the uncertainties associated with Doppler corrections. From the measured centroid energies, a ground state Lamb shift of 468 eV+/-13 eV is deduced which gives the most precise test of quantum electrodynamics for a single electron system in the strong field regime.
View Article and Find Full Text PDF