Rationale: Cardiac-expressed long noncoding RNAs (lncRNAs) are important for cardiomyocyte (CM) differentiation and function. Several lncRNAs have been identified and characterized for early CM lineage commitment, however those in later CM lineage specification and maturation remain less well studied. Moreover, unique atrial / ventricular lncRNA expression has never been studied in detail.
View Article and Find Full Text PDFWhile excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity.
View Article and Find Full Text PDFNew or mild heart failure (HF) is mainly caused by left ventricular dysfunction. We hypothesised that gene expression differ between the left (LV) and right ventricle (RV) and secondly by type of LV dysfunction. We compared gene expression through myocardial biopsies from LV and RV of patients undergoing elective coronary bypass surgery (CABG).
View Article and Find Full Text PDFAims: The vascular endothelial growth factor (VEGF) family is involved in pathophysiological mechanisms underlying cardiovascular (CV) diseases. The aim of this study was to investigate the associations between circulating VEGF ligands and/or soluble receptors and CV outcome in patients with acute coronary syndrome (ACS) and chronic coronary syndrome (CCS).
Methods And Results: Levels of VEGF biomarkers, including bFGF, Flt-1, KDR (VEGFR2), PlGF, Tie-2, VEGF-A, VEGF-C, and VEGF-D, were measured in the PLATO ACS cohort (n = 2091, discovery cohort).
The clinical heterogeneity of heart failure has challenged our understanding of the underlying genetic mechanisms of this disease. In this respect, large-scale patient DNA sequencing studies have become an invaluable strategy for identifying potential genetic contributing factors. The complex aetiology of heart failure, however, also means that models are vital to understand the links between genetic perturbations and functional impacts as part of the process for validating potential new drug targets.
View Article and Find Full Text PDF