Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFSuspending particles of tiny solid in a fluid used to transport energy can enhance its thermal conductivity and heat transport properties. Our main goal of this examination is to study the radiative unsteady two-dimensional (2D) flow on a continuously diminishing, horizontal sheet. with suction for the hybrid water-based nanofluid and an aligned field of magnetic, including the combined suction, magnetic, and velocity slip conditions effect.
View Article and Find Full Text PDFThis study aimed to investigate the consequences of the Darcy-Forchheimer medium and thermal radiation in the magnetohydrodynamic (MHD) Maxwell nanofluid flow subject to a stretching surface. The involvement of the Maxwell model provided more relaxation time to the momentum boundary layer formulation. The thermal radiation appearing from the famous Rosseland approximation was involved in the energy equation.
View Article and Find Full Text PDFThis numerical study aims to interpret the impact of non-linear thermal radiation on magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due to a rotating disk. Both the single walled, as well as multi walled, Carbon nanotubes (CNT) are invoked. The nanomaterial, thus formulated, is assumed to be more conductive as compared to the simple fluid.
View Article and Find Full Text PDFThe aim of this research is mainly concerned with the numerical examination of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by non-linear stretching sheet. A visco-elastic and strictly incompressible liquid saturates the designated porous medium under the direct influence of the Darcy-Forchheimer model and convective boundary. The magnetic effect is taken uniformly normal to the flow direction.
View Article and Find Full Text PDF