Although age differences in the dopamine system have been suggested to contribute to age-related cognitive decline based on cross-sectional data, recent large-scale cross-sectional studies reported only weak evidence for a correlation among aging, dopamine receptor availability, and cognition. Regardless, longitudinal data remain essential to make robust statements about dopamine losses as a basis for cognitive aging. We present correlations between changes in D2/3 dopamine receptor availability and changes in working memory measured over 5 yr in healthy, older adults (n = 128, ages 64 to 68 yr at baseline).
View Article and Find Full Text PDFHigher-Level Gait Disorder (HLGD) is a type of gait disorder estimated to affect up to 6% of the older population. By definition, its symptoms originate from the higher-level nervous system, yet its association with brain morphology remains unclear. This study hypothesizes that there are patterns in brain morphology linked to HLGD.
View Article and Find Full Text PDFKnowledge gaps about how the ocean melts Antarctica's ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation.
View Article and Find Full Text PDFBlood-brain barrier (BBB) disruption may contribute to cognitive decline, but questions remain whether this association is more pronounced for certain brain regions, such as the hippocampus, or represents a whole-brain mechanism. Further, whether human BBB leakage is triggered by excessive vascular pulsatility, as suggested by animal studies, remains unknown. In a prospective cohort (N = 50; 68-84 years), we used contrast-enhanced MRI to estimate the permeability-surface area product (PS) and fractional plasma volume ( ), and 4D flow MRI to assess cerebral arterial pulsatility.
View Article and Find Full Text PDF