Publications by authors named "A W. Nienhuis"

The fetal-to-adult hemoglobin switch has been a focus of a long-standing effort to potentially treat sickle cell disease and β thalassemia by induction of fetal hemoglobin. In a continuation of this effort, we designed specific transcriptional activator-like effectors (TALEs) to target both the Gγ and Aγ-globin promoters. We fused the TALEs to a LIM domain binding protein (Ldb1) dimerization domain, followed by a T2A green fluorescent protein (GFP) cassette, which were assembled into a lentiviral vector.

View Article and Find Full Text PDF

The X-linked bleeding disorder hemophilia causes frequent and exaggerated bleeding that can be life-threatening if untreated. Conventional therapy requires frequent intravenous infusions of the missing coagulation protein (factor VIII [FVIII] for hemophilia A and factor IX [FIX] for hemophilia B). However, a lasting cure through gene therapy has long been sought.

View Article and Find Full Text PDF

Wiskott-Aldrich syndrome (WAS) is a life-threatening immunodeficiency caused by mutations within the gene. Viral gene therapy to restore WAS protein (WASp) expression in hematopoietic cells of patients with WAS has the potential to improve outcomes relative to the current standard of care, allogeneic bone marrow transplantation. However, the development of viral vectors that are both safe and effective has been problematic.

View Article and Find Full Text PDF

Recently, an engineered Homeobox-nucleoporin fusion gene, NUP98-HOXA10HD or NA10HD, was reported to expand and maintain murine hematopoietic stem cells (HSCs). We postulated that NA10HD would increase the number of human γ-globin-expressing cells to therapeutic levels. We developed a double gene lentiviral vector encoding both human γ-globin and NA10HD, which was used to transduce human peripheral blood CD34 cells and increased engraftment 2- to 2.

View Article and Find Full Text PDF

Chromosome Conformation Capture (3C) technology was used to identify physical interactions between the proximal Wiskott-Aldrich Syndrome protein () promoter and its distant DNA segments in Jurkat-T cells. We found that two hematopoietic specific DNase I hypersensitive (DHS) sites (proximal DHS-A, and distal DHS-B) which had high interaction frequencies with the proximal WASp promoter indicating potential regulatory activity for these DHS sites. Subsequently, we cloned several DNA fragments around the proximal DHS-A site into a luciferase reporter vector.

View Article and Find Full Text PDF