Our laboratory has previously reported results from a rat silica inhalation study which determined that, even after silica exposure ended, pulmonary inflammation and damage progressed with subsequent fibrosis development. In the present study, the relationship between silica exposure, nitric oxide (NO) and reactive oxygen species (ROS) production, and the resultant pulmonary damage is investigated in this model. Rats were exposed to silica (15 mg/m3, 6 h/day) for either 20, 40, or 60 days.
View Article and Find Full Text PDFHuman epidemiologic studies have found that silicosis may develop or progress even after occupational exposure has ended, suggesting that there is a threshold lung burden above which silica-induced pulmonary disease progresses without further exposure. We previously described the time course of rat pulmonary responses to silica inhalation as biphasic, the initial phase characterized by increased but controlled pulmonary inflammation and damage. However, after a threshold lung burden was exceeded, rapid progression of silica-induced pulmonary disease occurred.
View Article and Find Full Text PDFNumerous investigations have been conducted to elucidate mechanisms involved in the initiation and progression of silicosis. However, most of these studies involved bolus exposure of rats to silica, i.e.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2002
In previous reports from this study, measurements of pulmonary inflammation, bronchoalveolar lavage cell cytokine production and nuclear factor-kappa B activation, cytotoxic damage, and fibrosis were detailed. In this study, we investigated the temporal relationship between silica inhalation, nitric oxide (NO), and reactive oxygen species (ROS) production, and damage mediated by these radicals in the rat. Rats were exposed to a silica aerosol (15 mg/m(3) silica, 6 h/day, 5 days/wk) for 116 days.
View Article and Find Full Text PDF