The measurement of perfusion and filtration of blood in biological tissue give rise to important clinical parameters used in diagnosis, follow-up, and therapy. In this paper, we address techniques for perfusion analysis using processed contrast agent concentration data from dynamic MRI acquisitions. A new methodology for analysis is evaluated and verified using synthetic data generated on a tissue geometry.
View Article and Find Full Text PDFThe Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters P. We propose a low cost approximation of the Delta method applicable to L-regularized deep neural networks based on the top K eigenpairs of the Fisher information matrix. We address efficient computation of full-rank approximate eigendecompositions in terms of the exact inverse Hessian, the inverse outer-products of gradients approximation and the so-called Sandwich estimator.
View Article and Find Full Text PDFPreoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume.
View Article and Find Full Text PDFA large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency.
View Article and Find Full Text PDFObjective: Medical image registration can be formulated as a tissue deformation problem, where parameter estimation methods are used to obtain the inverse deformation. However, there is limited knowledge about the ability to recover an unknown deformation. The main objective of this study is to estimate the quality of a restored deformation field obtained from image registration of dynamic MR sequences.
View Article and Find Full Text PDF