Kalirin is a multidomain protein with important roles in neurite outgrowth, and synaptic spine formation and remodeling. Genetic and pathophysiological links with various neuropsychiatric disorders associated with synaptic dysfunction and cognitive impairment have sparked interest in its potential as a pharmacological target. Multiple Kalirin proteoforms are detected in the adult human brain, yet we know little about the diversity of the transcripts that encode them or their tissue profiles.
View Article and Find Full Text PDFA role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field.
View Article and Find Full Text PDFNeurosci Biobehav Rev
August 2022
After a period of withdrawal, pharmaceutical companies have begun to reinvest in neuropsychiatric disorders, due to improvements in our understanding of these disorders, stimulated in part by genomic studies. However, translating this information into disease insights and ultimately into tractable therapeutic targets is a major challenge. Here we consider how different sources of information might be integrated to guide this process.
View Article and Find Full Text PDFBackground: Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state.
View Article and Find Full Text PDF