Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.
View Article and Find Full Text PDFExogenous ketone supplements are a potential augmentation strategy for cognitive resilience during acute hypoxic exposure due to their capacity to attenuate the decline in oxygen (O) availability, and by providing an alternative substrate for cerebral metabolism. Utilizing a single-blind randomized crossover design, 16 male military personnel (age, 25.3 ± 2.
View Article and Find Full Text PDFAcute ingestion of exogenous ketone supplements in the form of a (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME) can attenuate declines in oxygen availability during hypoxic exposure and might impact cognitive performance at rest and in response to moderate-intensity exercise. In a single-blind randomized crossover design, 16 males performed assessments of cognitive performance before and during hypoxic exposure with moderate exercise [2 × 20 min weighted ruck (∼22 kg) at 3.2 km/h at 10% incline] in a normobaric altitude chamber (4572 m, 11.
View Article and Find Full Text PDFA complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative.
View Article and Find Full Text PDFFewer than 1% of patients with type 1 diabetes achieve normal glycemic control (glycated hemoglobin [HbA1c] < 5.7%/ < 39 mmol/mol). Additionally, exogenous insulin administration often causes "iatrogenic hyperinsulinemia," leading to whole-body insulin resistance and increased risk of cardiovascular complications.
View Article and Find Full Text PDF