Astrocytes, the main Central Nervous System (CNS) glial cell type, actively release transmitters, including glutamate, and thereby participate in physiological brain information processing. However, dysregulated transmitter release from astrocytes can contribute to CNS disease pathogenesis and progression. Therefore, targeting astrocyte glutamate release is a promising new therapeutic strategy in hyper-glutamatergic brain conditions, as it does not directly block glutamatergic neurotransmission.
View Article and Find Full Text PDFMultimodal astrocyte-neuron communications govern brain circuitry assembly and function. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca-dependent exocytosis similar to neurons.
View Article and Find Full Text PDFThe entorhinal cortex-dentate gyrus circuit is centrally involved in memory processing conveying to the hippocampus spatial and nonspatial context information via, respectively, medial and lateral perforant path (MPP and LPP) excitatory projections onto dentate granule cells (GCs). Here, we review work of several years from our group showing that astrocytes sense local synaptic transmission and exert in turn a presynaptic control at PP-GC synapses. Modulation of neurotransmitter release probability by astrocytes sets basal synaptic strength and dynamic range for long-term potentiation of PP-GC synapses.
View Article and Find Full Text PDFReactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them.
View Article and Find Full Text PDFThe lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits.
View Article and Find Full Text PDF