Publications by authors named "A Villares"

Article Synopsis
  • Lytic polysaccharide monooxygenases (LPMOs) are important enzymes for breaking down biomass, but their exact functioning and interaction with cellulose’s structure are not fully understood.
  • This study looked at two LPMOs from the fungus Podospora anserina and their effects on different forms of cellulose, including cellulose I, II, III, and amorphous cellulose.
  • Results showed that both LPMOs were effective in altering cellulose structures, with a notable reduction in molar mass for cellulose I, and they increased cellulose's accessibility for further processing, which could aid in producing bio-based materials.
View Article and Find Full Text PDF

The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) and xyloglucan (XG), two non-toxic, renewable, and biobased components. We present three strategies to fine-tune the functional properties.

View Article and Find Full Text PDF

In this work, we evaluated the flexoelectric and piezoelectric contributions to the overall macroscopic polarization in cellulose films. To this end, the flexoelectric μ and transverse effective piezoelectric e coefficients of cellulose films were determined using cantilever beam bending. The experiments were based on theoretical developments allowing to separate the flexoelectric from the piezoelectric contribution, represented by an effective flexoelectric coefficient, μ, depending on both e and μ.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenase (LPMO) enzymes have recently shaken up our knowledge of the enzymatic degradation of biopolymers and cellulose in particular. This unique class of metalloenzymes cleaves cellulose and other recalcitrant polysaccharides using an oxidative mechanism. Despite their potential in biomass saccharification and cellulose fibrillation, the detailed mode of action of LPMOs at the surface of cellulose fibers still remains poorly understood and highly challenging to investigate.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists made special stretchy materials using cellulose and chitosan that can change shape when the pH (acidity) of their environment changes.
  • They created two-layer films inspired by plants, which can bend and twist when they come into contact with different pH levels.
  • By studying how these layers reacted to pH changes, they learned the importance of the materials' structure and charges on the surface to make sure they can go back to their original shape after bending.
View Article and Find Full Text PDF